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1. Introduction

The Stirling numbers of the second kind S(n, k), where n and k are nonnegative integers, are
defined to be the number of ways to partition a set of n elements into k non-empty subsets. It satisfies
the recurrence relation

(1.1) S(n, k) = S(n− 1, k − 1) + kS(n− 1, k),

and for fixed k ≥ 0, has the generating function

(1.2)
∞∑
n=0

S(n, k)xn =
k∏
i=1

x

1− ix
.

There is also an explicit formula in terms of binomial coefficients given by

(1.3) S(n, k) =
1
k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n.

Local properties of Stirling numbers have been studied from a number of different perspectives.
It is known, for example, that for each fixed k, the sequence {S(n, k) : n ≥ k} is periodic modulo
prime powers. The length of this period has been studied by Carlitz [4] and Kwong [6]. The values
∆n,m := gcd{k!S(n, k) : m ≤ k ≤ n} arise in algebraic topology and were investigated by Lundell [9]
using the explicit formula (1.3). Lengyel [8] studied the 2-adic valuations of k!S(n, k) and conjectured
an explicit formula for the valuation of S(2n, k). This conjecture was proved by DeWannemacker in
[5]. Various congruences involving sums of S(n, k) are also known [12].

Recently, the second author, with Amdeberhan and Moll [1], considered the sequence of 2-adic
valuations of S(n, k) for fixed k. They discovered a deep self-similar structure which they proved for
k ≤ 5. Other authors have looked at extensions to p-adic valuations for odd primes p [2], and have
proved partial results in that direction. In this paper, we approach the problem from a different angle.
Rather than looking for structure in the sequence {S(n, k)}n≥k, we look for reductions of S(n, k) for
general n and k modulo prime powers, and express them in terms of binomial coefficients, which are
much easier to analyze. Unlike much of the work mentioned above, our main tool will not be the
explicit formula (1.3), but rather the generating function (1.2).

The rest of the paper is organized as follows. We begin by investigating the parity of S(n, k)
and use our theorem to prove a surprising result on the structure of the odd central Stirling numbers
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S(2n, n). Then we extend our technique to obtain explicit reductions of S(n, k) modulo 4. In Section
4 we generalize our theorems to higher powers of 2, and consider the situation with odd prime powers
in Section 5.

Before we continue, we remark that while not immediately evident from our presentation, many
of our key results were discovered by mathematical experimentation. In particular, the correct forms
of Lemmas 4.1 and 5.1 were found with the help of Maple, and Theorem 2.4 was found using a
combination of computation and online resources.

Finally, let us introduce some notation. For a positive integer m, we write x ≡m y for x ≡
y (modm). Also, for a prime p, let νp(n) be the largest exponent k such that pk divides n, with
νp(0) =∞ for any p. That is, for n 6= 0, νp(n) is the unique positive integer such that pνp(n)‖n. Since
for any two numbers a and b, νp(ab) satisfies

νp(ab) = νp(a) + νp(b),(1.4)

νp has a natural generalization to the rationals via the identity

νp

(a
b

)
= νp(a)− νp(b).(1.5)

Lastly, we define sp(n) to be the sum of the digits in the base-p representation of n.

2. The Parity of S(n, k)

In this section, we investigate S(n, k) (mod 2). The generating function (1.2) allows us to obtain
handily the next theorem, which was noted in [13] geometrically.

Theorem 2.1. For positive integers n and k, we have,

(2.1) S(n, k) ≡2

0, if n < k,(
n− bk2 c − 1

n− k

)
, if n ≥ k.

Proof. We reduce the generating function (1.2) modulo 2 to obtain
∞∑
n=0

S(n, k)xn =
k∏
i=1

x

1− ix
≡2

xk

(1− x)b(k+1)/2c

= xk
∞∑
n=0

(−1)n
(
−bk+1

2 c
n

)
xn

= xk
∞∑
n=0

(
bk+1

2 c+ n− 1
n

)
xn

≡2

∞∑
n=k

(
bk+1

2 c+ n− k − 1
n− k

)
xn.(2.2)

Equating coefficients of xn and simplifying gives the desired result. �

Theorem 2.1 allows us to compute the parity of S(n, k) very efficiently, since the parity of binomial
coefficients is easy to compute. In fact, the p-adic valuations of binomial coefficients are well-known
([3], Ch. 1):

Proposition 2.2. Let p be a prime and n, k be non-negative integers. Then we have

(2.3) νp(n!) =
n− sp(n)
p− 1

,

and thus, for all 0 ≤ n ≤ k,

(2.4) νp

((
n

k

))
=
sp(k) + sp(n− k)− sp(n)

p− 1
.
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Theorem 2.1 also tells us that the parity of Stirling numbers S(n, k) matches up with the parity
of binomial coefficients in a non-trivial way. Recall that S(n, k) also satisfies recurrence relation
(1.1), analogous to the recurrence for binomial coefficients. Indeed, (1.1) can be used to construct
a “Stirling triangle” just as the binomial coefficients can be arranged in Pascal’s triangle. Relations
between entries in the two triangles exist, see for example [14], but are complicated. The simplicity
of Theorem 2.1 allows us to investigate the parity of corresponding subsequences between S(n, k) and(
n
k

)
.
One such application is to consider the central Stirling numbers S(2n, n). The corresponding

central binomial coefficients
(
2n
n

)
are ubiquitous in number theory and combinatorics. The Catalan

numbers, 1
n+1

(
2n
n

)
are particularly important. By (2.4), it is easy to see that for any n ≥ 1, we have

ν2

((
2n
n

))
= 2s2(n)− s2(2n) = s2(n) ≥ 1.

Thus there are no odd central binomial coefficients. But what about S(2n, n)? Using Pari/GP version
2.3.4 [10], we calculated the indices n for which S(2n, n) is odd and looked for structure. The first 20
terms of the sequence are:

1, 2, 4, 5, 8, 9, 10, 16, 17, 18, 20, 21, 32, 33, 34, 36, 37, 40, 41, 42.

Putting this sequence into Sloane’s Online Encyclopedia of Integer Sequences [11], we obtain a
unique match: sequence A003714, the Fibbinary numbers. This is the sequence of integers whose
binary representation contains no consecutive ones. We now prove this observation, and therefore
completely characterize the odd central Stirling numbers. We do this in two steps: first dealing with
the even indices and then the odd indices. Since multiplication by two does not change whether there
are consecutive ones in the binary representation of a number, one would expect the following lemma
to be true.

Lemma 2.3. For all n ≥ 0,

S(2n, n) ≡2 S(4n, 2n).

Proof. Theorem 2.1 implies that

S(2n, n) ≡2

(
2n− bn2 c − 1

n

)
.

We split into two cases according to the parity of n. If n is odd, then let n = 2k + 1 and write

S(2n, n) ≡2

(
4k + 2− k − 1

2k + 1

)
=
(

3k + 1
2k + 1

)
.

But we also know that

S(4n, 2n) ≡2

(
3n− 1

2n

)
=
(

6k + 2
4k + 2

)
=
(

2(3k + 1)
2(2k + 1)

)
.

By (2.4), we have

ν2

((
m

`

))
= s2(`) + s2(m− `)− s2(m)

= s2(2`) + s2(2(m− `))− s2(2m) = ν2

((
2m
2`

))
(2.5)

for all m, ` ∈ N with 0 ≤ ` ≤ m. The lemma for this case follows by setting m = 3k + 1, ` = 2k + 1.
In the second case, where n = 2k, write

S(2n, n) ≡2

(
4k − k − 1

2k

)
=
(

3k − 1
2k

)
.
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Comparing to S(4n, 2n), we get

S(4n, 2n) ≡2

(
6k − 1

4k

)
=

6k − 1
2k − 1

(
6k − 2

4k

)
.

We apply (1.4) and (1.5) to this formula to obtain

ν2

((
6k − 1

4k

))
= ν2

((
6k − 2

4k

))
+ ν2(6k − 1)− ν2(2k − 1) = ν2

((
6k − 2

4k

))
,

and the desired result follows from (2.5) by letting m = 3k − 1 and ` = 2k. �

Theorem 2.4. The central Stirling number of the second kind S(2n, n) is odd if and only if n is
a Fibbinary number.

Proof. By Lemma 2.3, we only need to consider n odd, since doubling n only appends zeroes
to the binary representation and hence does not affect the Fibbinary condition. Set n = 2k + 1 and
apply Theorem 2.1, as in Lemma 2.3 to find that

S(2n, n) = S(4k + 2, 2k + 1) ≡2

(
3k + 1
2k + 1

)
.

Thus by equation (2.4) we see that S(2n, n) is odd if and only if

ν2

((
3k + 1
2k + 1

))
= s2(2k + 1) + s2(k)− s2(3k + 1) = 0.(2.6)

First, we argue that for (2.6) to hold, k must be even. If not, then it is easy (via s2(2k + 1) =
s2(k) + 1) to see that

s2(2k + 1) + s2(k)− s2(3k + 1) = 2s2(k) + 1− s2(3k + 1).

Also, since k is odd then 3k is odd, so s2(3k) ≥ s2(3k + 1) due to the carry in the units digit when
adding 1 to 3k in binary. Thus, for k odd, we find that

ν2

((
3k + 1
2k + 1

))
= 2s2(k) + 1− s2(3k + 1)

≥ 2s2(k) + 1− s2(3k) = 1 + ν2

((
3k
k

))
≥ 1.

We have now reduced the problem to characterizing the even values of k such that
(
3k+1
2k+1

)
is odd.

In other words, even k for which

2s2(k) + 1− s2(3k + 1) = 0.

In this case, since k is even, 3k must also be even, hence

s2(3k + 1) = s2(3k) + 1.

Therefore,

ν2

((
3k + 1
2k + 1

))
= 2s2(k)− s2(3k) = 2s2(k)− s2(2k + k).

This final quantity will equal zero if and only if k is such that the addition in binary of 2k and k has
no carries, since

s2(a+ b) ≤ s2(a) + s2(b)
with equality if and only if the addition a+b has no carries. As the binary addition of 2k and k means
shifting the digits of k to the left and then adding the result to k, a carry occurs if and only if the
binary expression of k contains consecutive ones.

Putting it all together, we have proved that for odd n, S(2n, n) is odd if and only if k = (n− 1)/2
is an even Fibbinary number. It is easy to see that this is equivalent to n being an odd Fibbinary
number. �
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3. S(n, k) Mod 4

In this section we extend our approach above to completely characterize S(n, k) mod 4. We begin
with an easy lemma.

Lemma 3.1. For any n, k, m ∈ N, we have

(3.1) S(n, km) ≡m S(n− 1, km− 1).

Proof. Reduce the recurrence relation (1.1) modulo m, with k replaced by km. Equation (3.1)
follows immediately. �

Our next lemma completely characterizes S(n, 4) (mod 4), and will be the basis for the full char-
acterization in Theorem 3.3.

Lemma 3.2. For positive integers n, we have

(3.2) S(n, 4) ≡4


0, if n = 0, 1, 2, 3,
1, if n is even and n ≥ 4,
2, if n is odd and n ≥ 4.

Proof. We reduce the generating function (1.2) modulo 4. We easily find that
∞∑
n=0

S(n, 4)xn =
4∏
i=1

x

1− ix
≡4

x4

(1− x)(1− 2x)(1 + x)

=
x4

(1− x2)(1− 2x)
= x4

( ∞∑
n=0

x2n

)( ∞∑
n=0

(2x)n
)

≡4

∞∑
n=0

x2n+4 +
∞∑
n=0

2x2n+5.(3.3)

That is,
∞∑
n=0

S(n, 4)xn ≡
∑
n≥4
n even

xn +
∑
n≥4
n odd

2xn (mod 4),

from which the lemma follows immediately. �

Theorem 3.3. For positive integers n and r, we have

S(n, 4r) ≡4


2r
(n−1

2 − r − 1
r − 1

)
, if n is odd,

(n
2 − r − 1
r − 1

)
, if n is even;

(3.4)

S(n, 4r + 1) ≡4


(2r + 1)

(n−1
2 − r − 1

r

)
+
(n−1

2 − r − 1
r − 1

)
if n is odd,

(2r + 1)
(n

2 − r − 1
r

)
if n is even;

(3.5)

S(n, 4r + 2) ≡4


(2r − 1)

(n−1
2 − r − 1

r

)
, if n is odd,

(2r + 2)
(n

2 − r − 2
r

)
+
(n

2 − r − 1
r

)
if n is even;

(3.6)
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S(n, 4r + 3) ≡4



(n+1
2 − r − 2

r

)
, if n is odd,

(2r + 2)
(n

2 − r − 2
r

)
, if n is even;

(3.7)

Proof. We provide a proof that contains a combinatorial flavour, although the techniques used
in the next section can also be applied here. We first prove the theorem for S(n, 4r). The other
three are deduced from this case. As before, we reduce the generating function (1.2) modulo 4. With
k = 4r, we readily find that

∞∑
n=0

S(n, 4r)xn =
4r∏
i=1

x

1− ix
≡4

(
4∏
i=1

x

1− ix

)r
=

( ∞∑
n=0

S(n, 4)xn
)r

=
∑
n≥0

∑
n1,...,nr≥0
n1+···+nr=n

S(n1, 4)S(n2, 4) · · ·S(nr, 4)xn.(3.8)

By Lemma 3.2, the product S(n1, 4) · · ·S(nr, 4) is 0 (mod 4) whenever any ni ≤ 3, 1 ≤ i ≤ r, or
whenever any pair ni, nj , 1 ≤ i < j ≤ r, are both odd. Otherwise, the value of the product
S(n1, 4) · · ·S(nr, 4) is 1 or 2 depending on whether all the ni are even or if exactly one of them is odd.
This means the sum of the ni must be even in the former case and odd in the latter case. Thus,

∞∑
n=0

S(n, 4r)xn ≡4

∑
n≥0
n even

∑
n1,...,nr≥4
n1+···+nr=n
n1,...,nr even

xn +
∑
n≥0
n odd

∑
n1,...,nr≥4
n1+···+nr=n

Exactly one of n1, . . . , nr odd

2xn(3.9)

Note that the coefficients of xn in the first sum counts the number of solutions in non-negative
even integers (x1, . . . , xr) to the equation x1 + · · · + xr = n − 4r. Dividing both sides by 2, we find
that the number of solutions is equal to the number of solutions in non-negative integers (y1, . . . , yr)
to the equation y1 + · · · + yr = (n− 4r)/2. Therefore, an elementary combinatorial formula implies
that the coefficient of xn in the first sum is

(
(n−4r)/2+r−1

r−1

)
.

The coefficients of xn in the second sum counts twice the number of solutions in non-negative
integers (x1, . . . , xr) to the equation x1 + · · · + xr = n − 4r, with exactly one of x1, . . . , xr odd. By
symmetry, this is equal to 2r times the number of solutions in non-negative integers (y1, · · · , yr) to
the equation y1 + · · ·+ yr = n− 4r with y1 odd and y2, . . . , yr even. Subtracting 1 from both sides we
find that this equation is equivalent to (y1−1)+y2 + · · ·+yr = (n−1)−4r with y1−1, y2, . . . , yr, n all
even. Therefore, by the same analysis used in the first sum above, the coefficient of xn in the second
sum is 2r

(
(n−1−4r)/2+r−1

r−1

)
for odd n and 0 for even n. Putting these values for the coefficients into

(3.9) and simplifying, we arrive at the desired result.
Next, to prove the formula for S(n, 4r + 1), we once again reduce the generating function (1.2)

modulo 4 to find
∞∑
n=0

S(n, 4r + 1)xn =
4r+1∏
i=1

x

1− ix
≡4

(
4r∏
i=1

x

1− ix

)
x

1− x

=

( ∞∑
n=0

S(n, 4r)xn
)( ∞∑

m=1

xm

)
=
∞∑
n=0

n−1∑
m=0

S(m, 4r)xn.(3.10)

Thus,

S(n, 4r + 1) ≡4

b(n−1)/2c∑
m=0

S(2m, 4r) +
bn/2c∑
m=1

S(2m− 1, 4r)
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≡4

b(n−1)/2c∑
m=0

(
m− r − 1
r − 1

)
+
bn/2c∑
m=1

2r
(
m− r − 2
r − 1

)

=
b(n−1)/2c−2r∑

m=0

(
m+ r − 1

m

)
+ 2r

bn/2c−2r−1∑
m=0

(
m+ r − 1

m

)
.(3.11)

Applying the identity

(3.12)
r∑
j=0

(
n+ j

j

)
=
(
n+ r + 1

r

)
,

we find that

S(n, 4r + 1) ≡4

(
r − 1 + bn−1

2 c − 2r + 1
bn−1

2 c − 2r

)
+ 2r

(
r − 1 + bn2 c − 2r − 1 + 1

bn2 c − 2r − 1

)
=
(
bn−1

2 c − r
r

)
+ 2r

(
bn2 c − r − 1

r

)
.(3.13)

Splitting
(
(n−1)/2−r

r

)
into

(
(n−1)/2−r−1

r

)
+
(
(n−1)/2−r−1

r−1

)
when n is odd, we easily verify that (3.13) is

equivalent to (3.5).
Proving (3.6) is much easier, since by (1.2),

∞∑
n=0

S(n, 4r + 2)xn =

( ∞∑
n=0

S(n, 4r + 1)xn
)

x

1− 2x
≡4

( ∞∑
n=0

S(n, 4r + 1)xn
)

(x+ 2x2)

=
∞∑
n=0

(S(n− 1, 4r + 1) + 2S(n− 2, 4r + 1))xn.(3.14)

Combining (3.13) and (3.14) we find that

S(n, 4r + 2) ≡4 S(n− 1, 4r + 1) + 2S(n− 2, 4r + 1)

≡4

(
bn−2

2 c − r
r

)
+ 2r

(
bn−1

2 c − r − 1
r

)
+ 2
(
bn−3

2 c − r
r

)
=
(
bn−2

2 c − r
r

)
+ (2r + 2)

(
bn−1

2 c − r − 1
r

)
.(3.15)

Noting that 3 ≡ −1 (mod 4) and considering the cases where n is odd or even separately, we see that
(3.15) is equivalent to (3.6).

Finally, to prove (3.7), we apply (3.4) to (3.1) and simplify. �

4. Powers of 2

The success of the generating function approach in the previous sections motivates us to apply
these techniques to higher powers of 2. The question we need to answer, then, is, “What happens if we
try to reduce the polynomial in the denominator of (1.2) modulo 2m, for some m ≥ 3?” The answer
lies in the following lemma.

Lemma 4.1. Let m ≥ 3 be a positive integer. Then we have

(4.1)
2m−`−1∏
i=1

(1− 2`(2i− 1)x) ≡2m


(1− x2)2

m−2
, for ` = 0,

1− 2m−1x2, for ` = 1,
1, for 2 ≤ ` ≤ m− 2.

The l = 0 case appears, in stronger form, as (11) in the proof of Theorem 4 in [7].
Lemma 4.1 allows us to write the generating function for S(n, 2m) in a form from which formulas

relating S(n, 2m) to binomial coefficients modulo powers of 2 can be read.
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Corollary 4.2.∑
n≥0

S(n, 2m)xn ≡2m

x2m

(1− x2)2m−2(1− 2m−1x2)(1− 2m−1x)

≡ x2m

∑
k≥0

2k(m−1)x2k

∑
`≥0

2`(m−1)x`

∑
n≥0

(
−2m−2

n

)
x2n


≡2m x2m

(1 + 2m−1x2)(1 + 2m−1x)

∑
n≥0

(
−2m−2

n

)
x2n

(4.2)

We now prove the lemma.

Proof. We begin by noting that for m ≥ 3 and 0 ≤ ` ≤ m− 2 we have
2m−`∏
i=1

(1− 2`(2i− 1)x) =
2m−`−1∏
i=1

(1− 2`(2i− 1)x)(1− 2`(2i− 1 + 2m−`)x)

=
2m−`−1∏
i=1

[
(1− 2`(2i− 1)x)2 − 2mx(1− 2`(2i− 1)x)

]

=

2m−`−1∏
i=1

(1− 2`(2i− 1)x)

2

− 2mx
2m−`−1∑
j=1

(1− 2`(2j − 1)x)
∏

1≤i≤2m−`−1

i 6=j

(1− 2`(2i− 1)x)2

+ terms involving factors of 22m and higher.(4.3)

When 1 ≤ ` ≤ m− 2, the product (1− 2`(2j − 1)x)
∏

(1− 2`(2i− 1)x)2 is congruent to 1 (mod 2)
for all j. Thus

2m−`−1∑
j=1

(1− 2`(2j − 1)x)
∏
i6=j

(1− 2`(2i− 1)x)2 ≡ 2m−`−1 ≡ 0 (mod 2),

and so, since m ≥ 3, we have

(4.4)
2m−`∏
i=1

(1− 2`(2i− 1)x) ≡

2m−`−1∏
i=1

(1− 2`(2i− 1)x)

2

(mod 2m+1).

Similarly, when ` = 0, the product (1−2`(2j−1)x)
∏

(1−2`(2i−1)x)2 is congruent to (1−x)3 (mod 2)
for all j. Therefore we have

2m−1∑
j=1

(1− (2j − 1)x)
∏
i 6=j

(1− (2i− 1)x)2 ≡ 2m−1(1− x)3 ≡ 0 (mod 2),

and so (4.4) holds for ` = 0 as well.
Using (4.4), we easily prove Lemma 4.1 by induction on m. For the base case, m = 3, it is easy

to verify that
4∏
i=1

(1− (2i− 1)x) ≡8 (1− x)(1− 3x)(1 + 3x)(1 + x)

≡8 (1− x2)(1− 9x2) ≡8 (1− x2)2
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for ` = 0 and
2∏
i=1

(1− 2(2i− 1)x) ≡8 (1− 2x)(1 + 2x) ≡8 1− 4x2

for ` = 1.
Now suppose that for some m ≥ 3, (4.1) is true. This means that there are polynomials f`(x), 0 ≤

` ≤ m− 2, such that

(4.5)
2m−`−1∏
i=1

(1− 2l(2i− 1)x) = 2mf`(x) +


(1− x2)2

m−2
, for ` = 0,

1− 2m−1x2, for ` = 1,
1, for 2 ≤ ` ≤ m− 2.

Now apply (4.5) to (4.4) to obtain the result for m+ 1 and 0 ≤ ` ≤ m− 2. The final case for m+ 1
is ` = m− 1. Here note that the product contains only two factors, so

2m+1−(m−1)−1∏
i=1

(1− 2m−1(2i− 1)x) = (1− 2m−1x)(1− 3 · 2m−1x)

≡ (1− 2m−1x)(1 + 2m−1x)

≡ 1− 22m−2x2 ≡ 1 (mod 2m+1)

as desired. �

We are now ready to provide a characterization of S(n, k) (mod 2m) for any m ≥ 3.

Theorem 4.3. Let n, a,m be positive integers with m ≥ 3, a > 0, and n ≥ a2m + 1. Then

(4.6) S(n, a2m) ≡2m a2m−1

(bn−1
2 c − a2m−2 − 1
bn−1

2 c − a2m−1

)
+

1 + (−1)n

2

(
n/2− a2m−2 − 1
n/2− a2m−1

)
Proof. By (1.2) and Corollary 4.2, we find that

∑
n≥0

S(n, a2m)xn ≡ xa2
m

∑
n≥0

(−1)n
(
−a2m−2

n

)
x2n

 (1 + a2m−1x2)(1 + a2m−1x)

≡

∑
n≥0

(
a2m−2 + n− 1

n

)
x2n+a2m

 (1 + a2m−1x+ a2m−1x2).(4.7)

Collecting powers and reindexing, we obtain

S(n, a2m) ≡2m


a2m−1

(n−a2m−1
2 + a2m−2 − 1

n−a2m−1
2

)
if n is odd,

(n−a2m

2 + a2m−2 − 1
n−a2m

2

)
+ a2m−1

(n−a2m−2
2 + a2m−2 − 1

n−a2m−2
2

)
if n is even,

which is equivalent to (4.6). �

Next we prove a formula for S(n, k) (mod 2m) when k is not necessarily a multiple of 2m. We
will use the notation tN (x1, . . . , xM ) for the elementary symmetric polynomial on x1, . . . , xM of degree
N . These polynomials exist for integers N and M such that 0 ≤ N ≤ M and are generated by the
formula

M∏
i=1

(z − xi) =
M∑
N=0

tN (x1, . . . , xM )zM−N .
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Theorem 4.4. Let n, a, b,m be positive integers with m ≥ 3, a > 0, and b, n ≥ 0. Then we have

S(n, a2m + b) ≡
2m−b−1∑
i=0

S(n+ 2m − b− i, (a+ 1)2m)ti(1, 2, . . . , 2m − b− 1)(4.8)

≡
n∑
i=0

S(i, a2m)S(n− i, b) (mod 2m).(4.9)

Proof. The second congruence follows immediately from the fact that

∑
n≥0

S(n, a2m + b)xn ≡2m

(
a2m∏
i=1

x

1− ix

)
·

(
b∏
i=1

x

1− ix

)
=
∑
n≥0

∑
i+j=n

S(i, a2m)S(j, b)xn.

To obtain the first congruence, note that∑
n≥0

S(n, a2m + b)xn

=

(a+1)2m∏
i=1

x

1− ix

(2m−b−1∏
i=0

1− ((a+ 1)2m − i)x
x

)

≡2m

∑
n≥0

S(n, (a+ 1)2m)xn−2m+b

(2m−b−1∏
i=1

(1 + ix)

)

≡2m

∑
n≥0

S(n+ 2m − b, (a+ 1)2m)xn

(2m−b−1∑
i=0

ti(1, 2, . . . , 2m − b− 1)xi
)
.

Multiplying through and collecting like powers yields (4.8). �

Remark 4.5. To compute a congruence formula for a Stirling number S(n, k) in terms of binomial
coefficients mod a power of 2, we rewrite k = a2m + b and apply the previous theorem. (Notice that
the result is “tight” in the sense that it does not hold if ≡2m is replaced by ≡2m+1 .) The symmetric
representation (4.8) is generally more useful for computations, since for a fixed m, all of the symmetric
polynomials ti can be precomputed and the sum on i is a short sum, the length of which is 2m−b ≤ 2m.
Compare this to the sum in (4.9), the length of which is n ≥ a2m.

5. Odd Prime Powers

The ideas used in the previous sections carry over to the case where the modulus is a power of an
odd prime. Thus, we obtain the following analogous version of Lemma 4.1.

Lemma 5.1. Let p be an odd prime and m, ` be integers with 0 ≤ ` < m. Then we have

(5.1)
∏

1≤i≤pm−`

gcd(p,i)=1

(1− p`ix) ≡pm

{
(1− xp−1)p

m−1
, for ` = 0,

1, for 1 ≤ ` ≤ m− 1.

Proof. For each fixed odd prime p, we induct on m. The base case m = 1 is straightforward,
and is equivalent to proving that

(1− x)(1− 2x) · · · (1− (p− 1)x)− (1− xp−1) ≡ 0 (mod p).

If the left-hand side of the above is not identically 0, then it is a polynomial of degree at most p− 1,
and thus has at most p−1 zeroes mod p. But x ≡p 0 is clearly a zero, and by Fermat’s Little Theorem
so is every non-zero congruence class mod p. Therefore the polynomial must be identically zero.
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Now suppose the lemma is true for somem ≥ 1. Then as before we find that atm+1 the left-hand
side of (5.1) becomes∏

1≤i≤pm−`+1

gcd(p,i)=1

(1− p`ix)

=
∏

1≤i≤pm−`

gcd(p,i)=1

(1− p`ix)(1− (p`i+ pm)x) · · · (1− (p`i+ pm(p− 1))x)

=
∏

1≤i≤pm−`

gcd(p,i)=1

(1− p`ix)p −
p−1∑
j=1

pmjx(1− p`ix)p−1

+ terms involving powers of p2m and higher
]
.(5.2)

For m ≥ 1, we have 2m ≥ m+ 1. Also, since p is odd, the sum
∑p−1
j=1 j ≡ 0 (mod p). Thus

(5.3)
∏

1≤i≤pm−`+1

gcd(p,i)=1

(1− p`ix) ≡
( ∏

1≤i≤pm−`

gcd(p,i)=1

(1− p`ix)
)p

(mod pm+1).

Using (5.3) with the fact that for any prime p and polynomials r(x) and s(x), we have r(x) ≡
s(x) (mod pm)⇒ r(x)p ≡ s(x)p (mod pm+1), we obtain the desired result for 0 ≤ ` ≤ m− 1. The final
piece, ` = m, follows easily from the fact that

(1− pmx)(1− 2pmx) · · · (1− (p− 1)pmx)

≡ (1− p2mx2)(1− 4p2mx2) · · · (1− [(p− 1)/2]2p2mx2) ≡ 1 (mod pm+1)

whenever m ≥ 1. �

Comparing Lemma 5.1 to Lemma 4.1, we see that the result is simpler for odd primes. We easily
obtain the congruences for Stirling numbers modulo odd prime powers.

Theorem 5.2. Let p be an odd prime and let n, a,m be positive integers with m ≥ 1, a > 0, and
n ≥ apm. Then

(5.4) S(n, apm) ≡pm


(n−apm−1

p−1 − 1
n−apm

p−1

)
, if n ≡ a (mod p− 1),

0, otherwise.

Proof. By (1.2) and Lemma 5.1, we find that

∑
n≥0

S(n, apm)xn =
apm∏
i=1

x

1− ix
≡pm

(
pm∏
i=1

x

1− ix

)a

≡ xap
m

(
1

(1− xp−1)pm−1

)a
≡ xap

m ∑
n≥0

(−1)n
(
−apm−1

n

)
xn(p−1)(5.5)

≡
∑
n≥0

(
apm−1 + n− 1

n

)
xn(p−1)+apm

.(5.6)

Collecting powers and reindexing, we obtain the desired result. �
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Theorem 5.3. Let p be an odd prime and n, a, b,m be positive integers with m ≥ 1, n > 0,
0 ≤ b ≤ pm − 1, and n ≥ apm + b. Also let tN (x1, . . . , xM ) be as in Theorem 4.4. Then we have

S(n, apm + b)

≡
∑

0≤i≤pm−b−1
i≡n−a−b (mod p−1)

S(n+ pm − b− i, (a+ 1)pm)ti(1, 2, . . . , pm − b− 1)(5.7)

≡
∑

0≤i≤n
i≡a (mod p−1)

S(i, apm)S(n− i, b) (mod pm)(5.8)

Proof. The proofs of (5.7) and (5.8) are analogous to those of (4.8) and (4.9), respectively, with
2 replaced by p everywhere. The extra condition on the summation index i in (5.7) comes from the fact
that by Theorem 5.2, S(n+pm−b−i, (a+1)pm) ≡ 0 (mod pm) unless n+pm−b−i ≡ a+1 (mod p−1).
This implies i ≡ n − a − b (mod p − 1). The condition i ≡ a (mod p − 1) in (5.8) is also a result of
Theorem 5.2. �

We have proven congruences between Stirling numbers and finite sums of binomial coefficients
modulo powers of primes. The theorems are slightly different for powers of 2 than they are for powers
of odd primes. Theorems 4.3 and 5.2 give us a simple form for S(n, k) when k is a multiple of the
modulus. Thus we can easily obtain local information on S(n, k) modulo any divisor of k, by applying
Theorems 4.3 and 5.2 in conjunction with the Chinese Remainder Theorem. It is worth noting that the
theorems of Kwong [6] that give minimum periods for Stirling numbers modulo M can be recovered
from here.

Although the case where the modulus does not divide k appears to be much more complicated, as
shown by Theorems 4.4 and 5.3, we believe that further investigations would yield meaningful results.
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