MATH 3070

Assignment # 3 Solutions Due Thursday, October 2, 2008

1. Solution 1: Since a and b are invertible, we find that $(ab)(b^{-1}a^{-1}) \equiv 1 \pmod{m}$ so that $(ab)^{-1}$ exists and is equal to $b^{-1}a^{-1}$.

Solution 2: Since a and b are both invertible, we have that (a, m) = (b, m) = 1. If ab is not invertible, then (ab, m) = d > 1 so there is a prime p such that p|ab and p|m. But by Euclid, p|ab implies p|a or p|b and in either case will be a common facto with m, contradicting invertibility of a or b.

- 2. If there is a solution to x such that $x^2 \equiv 244714 \pmod{1256636}$, then since $1256636 = 4 \cdot 314159$ by the Chinese Remainder Theorem it must satisfy both $x^2 \equiv 244714 \pmod{4}$ and $x^2 \equiv 244714 \pmod{314159}$ simultaneously. But $244714 \equiv 2 \pmod{4}$ and thus $x^2 \equiv 2 \pmod{4}$, which is impossible since the squares mod 4 are 0 and 1.
- 3. Let a and m be as in the statement of the problem. The set $S = \{ax : 0 \le x \le m-1\}$ contains exactly m elements. Thus by Corollary 13.1 the set is a complete residue system if we can prove that the elements are pairwise incongruent mod m. But that is easy, since if we have two elements ax_1 and ax_2 in S, then $ax_1 \equiv ax_2 \pmod{m}$ implies $x_1 \equiv x_2 \pmod{m}$ since we can cancel the a. Thus the elements of S are pairwise incongruent mod m.
- 4. (a) Solving the individual congruences, we find that the system is equivalent to

$$x \equiv -1 \pmod{7}$$

$$x \equiv -1 \pmod{8}$$

$$x \equiv -1 \pmod{29}$$
.

Thus we find that $x \equiv -1 \pmod{7 \cdot 8 \cdot 29}$.

- (b) Break up the first congruence into prime powers, so $5x \equiv 3 \pmod{12}$ is the same as the system $5x \equiv 3 \pmod{3}$ and $5x \equiv 3 \pmod{4}$. But this means x must satisfy $x \equiv 3 \pmod{4}$. Solving the mod 8 congruence we find that $x \equiv 5 \pmod{8}$. This contradicts the mod 4 congruence. So the system has no solutions.
- 5. (a) Let m = 8, then $x^2 \equiv 1 \pmod{8}$ has solutions $x \equiv 1, 3, 5, 7 \pmod{8}$.
 - (b) Suppose $x^2 \equiv a \pmod{p^2}$ has a solution $x \equiv r \pmod{p^2}$. Then we may rewrite the congruence as $x^2 \equiv r^2 \pmod{p^2}$, and any other solution must satisfy $(x+r)(x-r) \equiv 0 \pmod{p^2}$. Thus we have

$$p^2|(x+r)(x-r).$$

We have three cases.

Case 1: $p^2|(x+r)$, then we have the solution $x \equiv -r \pmod{p^2}$.

Case 2: $p^2|(x-r)$, then we have the solution $x \equiv r \pmod{p^2}$.

Case 3: p(x+r) and p(x-r). Then we have the system of simultaneous congruences

$$x \equiv r \pmod{p}$$

$$x \equiv -r \pmod{p}$$
.

But since p is an odd prime, $r \not\equiv -r \pmod{p}$ if $r \not\equiv 0 \pmod{p}$. So case 3 has no solutions unless $r \equiv 0 \pmod{p}$. But if $r \equiv 0$, then r^2 has contains a factor of p^2 so $a \equiv 0 \pmod{p^2}$.

(c) Again, we suppose there is a solution $x \equiv r \pmod{p_1 p_2}$. Then we use it to find all the other solutions. So any other solution must satisfy

$$p_1p_2|(x+r)(x-r).$$

Here we have four cases.

Case 1: $p_1p_2|(x+r)$, then there is one solution $x \equiv -r \pmod{p_1p_2}$.

Case 2: $p_1p_2|(x-r)$, then there is one solution $x \equiv r \pmod{p_1p_2}$.

Case 3: $p_1|(x+r)$ and $p_2|(x-r)$. This corresponds to the system

$$x \equiv -r \pmod{p_1}$$
$$x \equiv r \pmod{p_2},$$

which has a unique solution mod p_1p_2 by the Chinese Remainder Theorem.

Case 4: $p_1|(x-r)$ and $p_2|(x+r)$. This corresponds to a system similar to Case 3, and has a unique solution mod p_1p_2 as well.

Since each case yields at most one solution, we obtain a maximum of 4 distinct solutions mod p_1p_2 .

6. Since 17 is prime, we apply Fermat's little Theorem to find that if $n \not\equiv 0 \pmod{17}$, then $n^{16} \equiv 1 \pmod{17}$. Thus

$$n^{35} - 4n^{24} + 5n^{16} + 21n^8 - n^3 + 2 = (n^{16})^2 n^3 - 4n^{16}n^8 + 5n^{16} + 4n^8 - n^3 + 2$$

$$\equiv n^3 - 4n^8 + 5 + 4n^8 - n^3 + 2 \equiv 7 \pmod{17}$$

is never zero. If $n \equiv 0 \pmod{17}$, then the polynomial is congruent to 2 (mod 17) which is also not zero.

7. Let n be composite. Then it must have a prime factor p such that $1 . Therefore, <math>n/p \in \mathbb{N}$ and 1 < n/p < n as well. So if $p \neq n/p$ then both p and n/p occur in the list $1, 2, \ldots, n-1$ and their product occurs as a factor in (n-1)!. Thus $(n-1)! \equiv 0 \pmod{n}$.

On the other hand, if p = n/p then $n = p^2$. If n > 4, then p > 2 so p and 2p are both in the list, since $2p < p^2$, and we also have $(n-1)! \equiv 0 \pmod{n}$.

In the final case, if n = 4, then $(n - 1)! = 6 \equiv 2 \pmod{4}$.