MATH 3070

Assignment # 2 Solutions Due Thursday, September 25, 2008

- 1. (a) If no term is 2, then suppose we have a prime term. Then it must be odd. So the next term must be even (and therefore composite, as it's not 2) since the common difference is odd and odd + odd = even.
 - (b) Suppose we have three consecutive terms p, p+2, and p+4 such that p is a prime not equal to 3. Then $p \equiv \pm 1 \pmod{3}$. If $p \equiv 1 \pmod{3}$, then $p+2 \equiv 0 \pmod{3}$ and must be composite as $p \geq 2$ and so $p+2 \neq 3$. Similarly, if $p \equiv -1 \pmod{3}$ then $p+4 \equiv 0 \pmod{3}$ is composite.
 - (c) Consider four consecutive terms n, n + d, n + 2d, n + 3d. If n is odd, then n + d and n + 3d are both even and therefore not coprime. If n is even, then n and n + 2d are both even and therefore not coprime.
 - (d) Let the progression be $a, a+d, a+2d, \ldots, a+999d$, where d is the common difference. Since they are pairwise coprime, for all $1 \le k < \ell \le 999$ we have $(a+kd, a+\ell d) = (a+kd, (\ell-k)d) = 1$. If we choose a=1 and d=1000!, then since for any k, (1+k1000!,1000!)=1, no prime less than 1000 divides 1+k1000!. Thus 1+k(1000!) must be coprime to $(\ell-k)1000!$, as $1 \le \ell-k \le 999$.
- 2. Note that $(F_{n+1}, F_n) = (F_n + F_{n-1}, F_n) = (F_n, F_{n-1})$. So since $(F_0, F_1) = 1$, we may induct on n to obtain $(F_{n+1}, F_n) = 1$.
- 3. Suppose not. Let $2 = p_1 < p_2 < \cdots < p_n$ be the list of all primes congruent to 2 (mod 3). Let $N = 3p_2p_3\cdots p_n + 2$. Since $N > p_n$ it must be composite. However, since the product of integers congruent to 0 or 1 (mod 3) is either 0 or 1, N must have a prime factor that is congruent to 2 (mod 3). But by construction N is coprime to p_i for all $1 \le i \le n$, and we have a contradiction.
- 4. Reduce mod 16. $x^4 \equiv 0, 1 \pmod{16}$ and $y^3 \equiv 0, \pm 1, 8, \pm 5, \pm 3, \pm 7 \pmod{16}$. So $y^6 \equiv 0, 1, 9 \pmod{16}$ and $y^6 + 2 \equiv 2, 3, 11 \pmod{16}$. Since the LHS is never congruent to the RHS, there are no solutions.
- 5. Solution 1: Note that $2008 = 8(251) = 2^3 + 2^4 + 2^6 + 2^7 + 2^8 + 2^9 + 2^{10} = 2^3(1 + 2(1 + 2(1 + 2(1 + 2(1 + 2) \cdots)))$. Thus $4^{2008} = (\cdots (4^24)^24)^24)^24)^24)^24)^24)^2)^2$. Successively squaring and reducing yields $4^2 = 16, 64, 64^2 \equiv 96 \equiv -4, -16, (-16)^2 \equiv 56, 24, 24^2 \equiv 76, 4, 4^2 \equiv 16, 16^2 \equiv 56, 24, 24^2 \equiv 76, 4, 16, 56, 56^2 \equiv 36$. So the last 2 digits are 36.

Solution 2: Searching for the cycle, we find that the powers of 4 (mod 100) are 4, 16, 64, 56, 24, 96 \equiv -4, -16, -64, -56, -24, $4 \equiv 4^{11}$. So the cycle length is 10 and so $4^{1+10k} \equiv 4 \pmod{100}$. Thus $4^{2001} \equiv 4 \pmod{100}$, so that $4^{2008} \equiv 4^8 \equiv -64 \equiv 36 \pmod{100}$.

- 6. (a) $3x \equiv 1 \equiv -156 = 3(-52) \pmod{157}$. Thus $x \equiv -52 \equiv 105 \pmod{157}$.
 - (b) $7x \equiv 12 \equiv 84 \pmod{36}$. Thus $x \equiv 12 \pmod{36}$.