MATH 3070

Assignment # 5

Due Thursday, October 30, 2008

- 1. (a) Find all primitive roots mod 23.
 - (b) Determine all residue classes mod 23 of the following orders, or state why none exist: order 2, order 5, order 11.
- 2. Existence of primitive roots for composite moduli.

In this problem, the letter p will always denote an odd prime.

- (a) Let (m,n) = (a,mn) = 1. Let $\operatorname{ord}_m(a) = k$ and $\operatorname{ord}_n(a) = \ell$. Prove that $\operatorname{ord}_{mn}(a) = \frac{k\ell}{\gcd(k,\ell)} = \operatorname{lcm}(k,\ell)$.
- (b) Explain why unless m = 2 or n = 2, there are no primitive roots mod mn. This shows that if N is composite, there are no primitive roots mod N unless N is a prime power or two times a prime power.
- (c) Let a be a primitive root mod p^k , where p is an odd prime and $k \geq 1$. Show that $\operatorname{ord}_{p^{k+1}}(a)$ must be a multiple of $\varphi(p^k)$.
- (d) Let a be a primitive root mod p. Prove that either $\operatorname{ord}_{p^2}(a^{p-1}) = 1$ or a is a primitive root mod p^2 .
- (e) Let a be a primitive root mod p. If $\operatorname{ord}_{p^2}(a^{p-1}) = 1$ then prove that a + p is a primitive root mod p^2 .
- (f) Let a be a primitive root mod p^2 . Prove that a is also a primitive root mod p^k for k > 2.

Hint: Induct on k. Using the inductive hypothesis, first show that if $a^{p^{k-2}(p-1)} \not\equiv 1 \pmod{p^k}$ then a must be a primitive root mod p^k . Next show $a^{p^{k-2}(p-1)} \not\equiv 1 \pmod{p^k}$ by contradiction. You might find the factorization

$$a^{p^{k-2}(p-1)} - 1 = (a^{p^{k-3}(p-1)} - 1)(a^{p^{k-3}(p-1)(p-1)} + a^{p^{k-3}(p-1)(p-2)} + \cdots + a^{p^{k-3}(p-1)(1)} + 1)$$

useful. Think about how many factors of p can divide each of these factors.

- (g) Use the results of the previous parts to construct a primitive root mod $2p^k$.
- 3. Use indices to find all solutions to the following congruences
 - (a) $4x^4 \equiv 9 \pmod{23}$
 - (b) $x^{10} \equiv 45 \pmod{76}$